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SUMMARY
An algorithm 1is given.for the numerical solution of the
"mixed integer" linear programming problem, the problem of
maximizing a linear form in finitely many variables constrained
both by linear inequalities and the requirement that a proper
subset of the variables assume only 1ntegra1 values, The

algorithm 18 an extension of the cutting plane technique for

the solution of the '"pure integer" problem.
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AN ALGORITHM FOR THE MIXED INTEGER PROBLEM
Ralph QGomory
II :
The problem discussed here 1s an integer programming

problem,/i.e., the problem of maximizing
|

/ ok ¢
/ z - aO,O + Jul ao,j(— J)-
subject to the inequalities
. J=n
(1) jfl ai,JtJ L8y o . 1i=1, ..., m

and subject to the additional condition that some specified
subcollection of the variables appearing above should be
integers.

If the inequalities above are changed int§ equations in
nonnegative variables by the addition of m "slack"” variables, '
and the whole set 1s enlarged to form a set in which all the

variables are expressed in terms of the independent or "nonbasic"

ones, we have

J=n )
Z = 8 + X a (—t
: 0,0 Sml o,q J
J=n1
8, = a + Z a, . (-t, ) 1 =1, ..., m

i,0 Jml i,J

ty = -1(ftJ) - : J=1, ..., no
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For the sake of a more uniform notation we will rewrite this as

Jain
4+ 2 a
Jm=l

(2) X, = &

N 1UJF¢J) i =0, ..., myn,

i,o

where the Xy now are all the variables and the a are all

1,J
the coefficients.

1 linear programming problem is solved by apply-

The usual
ing G. B. Dantzig's simplex method. In thié method a series
of "pivot steps," "Gaussian eliminations," 'changes of basié,”
or 'changes to different sets of nonbasic variables" bring the
equations (2) into a form in which, denoting the new coeffi-

cieats in the equations by primes,

1
(1) 31'020 1 .l, o0 0y 4N
and '

(11) a;,J >0 S g=1, .

The first condition i1s the condition that in the 'trlal solution”
obtained by putting all the nonbaclc variables equal to zero,

the values that result for all the variables are nonnegative.

The second condition makes certain that the objectlve function

1s in fact maximal when the varfables are given the values they

attain in this trial solution. The sclution cbtained is of course

{The usual method terminates when conditions (11) first
hold. It is necessary here that the pivoting continue untll
all columns J > O become lexlicographically positive. The
procedure tor doing this is described in [1]. '
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Xi - a1,° ' i 1 - O, «s 0y mK. )

This solution may very well not satisfy the integer requirement,
i1.e., some Xy that 1is required to be an integer 1is assigneq the .
noniéteger value a;’o. ' : '

If this occurs we will be able to deduce a new inequality
that will be satisfied by any integer solution, i.e., by any
solution having integers where they are required, but will not
'be satisfied by the current trial solution.

Then, Just as in (1) and [2], this new inequaii:y will
be added to the original'set of 1neqpélities, and the new set
then remaximized by the simplex method. This remaximization
is uéually quite rapid as adding.the new 1néquality maintains
dual feasibility, and introduces Jjust the one unsatisfied
1nequality. |

If the new maiimum solutioﬁ still contains integer vari-
ables which are assigned noninteger values the process is
repeated.

To deduce this new inequality we malie use of the equation

(3) .' Xg =3y o+ o ai,J(—tJ)

1
where the x, 1s an integer variable, a

i i,o0
. . ]
the f.:‘j are the current set of nonbasic variables. Silnce ai

is noninteger, and

)
5 ’
is noninteger it can be written uniquely as the sum of an

! 1 1
integer ni,o and a fract.onal part fi,o’ 0 < ri,d < 1.
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We now 1magine that we have an integer solution to the
problem and use xi, tJ to denote the values given to the vari-

ables in (3) by this solution. Hence

[ 4 [ 4
ag,30-t)

and using a & b to mean & and b differ by an integer (equiv—

- r

alence modulo 1), we have, since x s 0 and a
1 i,o0 1,0

(%) s a,

We will group the constants on the left 1in (4) according

. . '
Let St be the set of indices j for which a

1,329

to their sign.

and S the set for which a < 0. Then

1,4

(5)

There are now two possibilitlies to consider.

expression on the left is (1) nonnegative,

Case

i

alent to fo,

Hence

'
f

=
JeS

» 01,00 jes™

Either the
or (11) negative.

Since the left side 18 nonnegative and gqui§~

] ’ ]
its value can only be fo, or 1 + fo, or 2 + fo,

i,o <

1] t .
b) - ai,JtJ'+

€S

3 Jes™

etc.




Case (i11). If the right-hand side 1s negative and equiv-

' ] ’ .
alent to'f1 it canonly bef -1, f — 2, etc. So in every
»0 o o)

case

!
z + =2

[]
a t
jest 123 7 g5

] 1]
or, multiplying by — £y o/1 - £y o0
) »

.
J ri o ] !
’ JeS l - fi 5 i

g

Now either (1) holds or (11i) holds so always

!
)
! ! 1 ."1 0o ! 1
(6) 1,08 T Pt e To e Ty
. »0

since the right side 18 the sum of two nonnegative numbers,
!

one of which 1s 2 fi,o'

This inequality then 1s satisflied by any integer solution
but not by the present'tfial solution since substituting

t, = O for all J into (6), makes the right-hand side 0.

J

Of course the inequality (6) can be rewritten as an equation

by introducing a nonnegatlive slack s. Then (6) becomes

) ‘1 r, :
8 m—f, - % .8 40t = = —44—(gL&p%;

o .
T JGS JeS . 1.-1fy 4

. 0 . o
e it A et s r ¥ AN Bl A e R AL D et -
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In obtaining (6) we have used only the fact that x, was

i
required to be an integer. If some of the nonbasic variabies

tJ are also integer variables, the ineqﬁalétyw(6) can be

" improved in a manner entirely analogous to the reduction

that is always possible in the etiicﬁly integer problem. The
1mprovémen£ will pake the form of a decregge in the coefficlents
on the right in the resulting 1nequaiity (6). It is clear that
for fixed £y o
the inequality.

the smaller these coefficients, the stronger

Let us suppose then that some tJ 18 required to be
o 1
integer and hence 1s assigned an integer value tJ in (5).
B o

!
Changing ay 3 by an integer amount then changes the left
2
o :
side of (5) by an integer, and hence preserves the equlvalence.
1,J° and
proceed Jjust as before to deduce an inequality like (6).

!
Thus we may replace 8y 3 by any new value a" aa
)
o

If a° > 0, the coefficlent of t, in the resulting in—

J
o '
equality 1s simply a . If a" 18 < 0, 1t 1s ~f, /(1= ¢

! »
1,0)a .

t '
= I the fractional part]'of a clearly
1’\10 \ 1JJ°

gives the smallest coefficlent to tJ in the resulting in-—

* *
Among a > 0, a

o : :
equality. (This may even be 0.) Among a < 0, the smallest

t
coefficient 1a obtained from a' - ri-J -~ 1, and 1is
2
o)

£ -
(7) L2 (1-1y ).
l~°¢ . Yo

i,o

IBy the fractional part of both positive and negative _
numbers a, 3 we will mean the nonnegative fraction fi 3 < 1 such
’ . ) 2 .
that ai,J - ni,J + ri,J with ni,J 1ntege?.




To obtain the smallest possible'coefficiént.we choose'fhe :
, .

i,J
S o .
form x/1 — x 1ncreases monotonically with x 1s seen to be

smaller of and (7) which, because an expression of the

' '
be fi,J S»fi,o

q ]
ri’Jo ' o)

and

r : '
__2;21__. 1~ £l 17 . >'f{ .
1, J i, 0,0
1l - fi 9 o

It follows that the strongest inequality 1s obtained by
a simple two—stage process. (1) First replace coefficients

of integer varlables by theilr fractional parts if these are

]
1,0
greater than ¢

» or by the fractional parts less 1 if ﬁhey are

!
1,0°

before. The filnal result obtained from the equation

less than f
(11) Then deduce the inequality (6) as

t ]
= x -
Xy ai,o + ai,J( tJ)
by this procedure 1s the 1nequality represented by the equation

1

(8) s =y - E r;,J(_tJ)

where the fz 3? all nonnegative, are given'by the following
, .

fornulae: .

. ok o ey o gTe oA ST A A et T
...,..‘g'cg f’" % : e = [ STV

e Sl 2mAx Aovarte iz (S 7L L R it oL st e
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,.‘. 1
if int aria
ai,J | ai,J > O.and tJ nonin ege? vari ble.
f'
a L}
__Euﬁg__.(—ai J) ir a, 3 < O and tJ noninteger variable
’ . ’ .
o 1- fi,o
i’J = < t t [N
fi,J ir fi,J < fi,o and tJ integer varlable
L}
fi o) 1} t . L} .
—t (fi =1) - 1if £y 4 > f; o &and t, integer variable
' 1 -f »d »J »0 J
_ 1,0
-

Equation (8) is then added and the problem is remaximlzed.
It seems sensible to use the dual simplex method at this point
as_all the a;’J, J>1, are.nonnégative, and there 1s only one
negative element, ‘fi,o’ in the O—column.

If the dual simplex method 1s applied, the O—column 1s
decreased lexicographically at the nex: step, and furthermore,
denoting by double primes the coefficlents after the next

pivot step and by Jo the column in_wbich the pivot step taxes

place, we have

t
ai,o < ni,o ir ai’Jo >0
(9)
11} 1 t
al,o > ni,o +1 if ai,Jo <0
t t
where n 1s the integer part of a, _, the index 1 in (9) 1s
?

1,0
that of the row figuring in equations (3) through (8).
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This means that after the next pilvot step the value as—
signed to 7y by the new trial solutlon 1s either > the next
high?st integer, or < the next lowest integer.

! .
' To see this we conslder the mechanism of the dual simplex

metpod. The dual simplex method will pick a pivot 1n the new
! . .

row represented by (8). 1If the pivot element 1is chosea in
I

this row and in the J column then the formula for the a

i, o
i
~that results after a pivot step 1s
. f' .
" o ! i,Oai,Jo
84,0 8,0~ P .
1,J, ‘
. t . ’
Now the formulas for fi 3 show that 1°f ay 3 is positive
] > :
o)
and tJ noninteger we have
o
f' L ]
1 n ' ] 1)oa1)Jo []
(10) a1,0 = ai,o "'“_:;r""—— = n1,o *
1,50.

It a, 3 1s negative and €, noninteger we have
2% Yo

| B ORI
(11) . 2y o =
1
—a
<l-—f Q> <i’o>
LI ]
=8 o " fy,o vl =0y o+
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To cover the cases when tJ 1s an integer variable we
. o . : ' :
need only remember that in this case the f; 3 i1s deduced by
, :

a two—-stage process, part (11) of which 1s exactly the same as
the process used to deduce the fi J when tJo i1s noninteger.
Consequently i1f part (1) leaves a1 )3 unchanged, either (10)

or (11) holds Jjust as above. Part (1) will have ai’i un—

changed only if either

or

1
aj <O, 8 y=f) =1, andf

?
£
1,3 1,3 2 *1,0

Otherwise part (1) makes a change which results in a
strictly smaller final f; 3" So in these cases we have the

strict inequalities

1" ] [
< ni,o . if ai’Jo >0

a1,0

ai,o > ni’o + 1 if ai,Jo < 0.

. ]
The remaining possibility, ai j= 0, can not occur because

a O implies r J = 0 and so fi 3

)
ai,J sJdo can not be the pivot
element. Thus (9) holds in all cases.

Now (é) 1s exactly the property requiréd for a finiteness
proof—1i.e., a proof that the solution 1ls attained in a finite

number of steps—provided that thé objective function z 1s one

of the integer varlables. To see this we arrénge the original

AR e 0 s o e -
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equations so that the 1nteger variables on the left in (2)

are the first rows followlng the obJecﬁive function z. (This
means that they rank higher lexicographically in the dual

simplex method.) @Given property (9), the reasoning in the

rirst finitness proof in [1] (pp. 33-35) now goes through
unchanged. Of course one must stop now on attaining the

required integer values in the o—column, as an all-‘nteger.

matrix is not generally obtalned.
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